
1

Network Layout

Maneesh Agrawala

CS 448B: Visualization
Fall 2021

1

Reading Response Questions/Thoughts
For the final project, do you have a recommendation of a place to go to view other data

visualization research papers that conducted user studies?

As animations contain more and more data, is it possible that we can overload or
overstimulate the user? Can animations be harmful by being too distracting? If so, how
can we safeguard our designs to make sure they don't cause this overstimulation?

Is there a more formal or mathematical rule set governing which colors to use to highlight
information, and which to contrast? Or is it mostly a combination of multiple factors that
you need to see to know? In a similar vein, do colors need to be different in shade as
well as color for black and white printing? How do we know to vary transparency with
color or just color?

How seriously should we take self-reported stated preferences when evaluating the strength
of a visualization? How much should we weight user’s expressed preference relative to
usability, learning, and recall data when evaluating the efficacy of a visualization?

2

2

Last Time: Animation
Understanding Motion

3

How does it work?

Two-cylinder Stirling engine
http://www.keveney.com/Vstirling.html

4

http://www.keveney.com/Vstirling.html

3

Problems [Tversky 02]

Difficulties in understanding animation
! Difficult to estimate paths and trajectories

! Motion is fleeting and transient

! Cannot simultaneously attend to multiple motions

! Trying to parse motion into events, actions and behaviors

! Misunderstanding and wrongly inferring causality

! Anthropomorphizing physical motion may cause confusion or

lead to incorrect conclusions

5

Solution I: Break into static steps

Two-cylinder Stirling engine
http://www.keveney.com/Vstirling.html

1

2

3

4

6

http://www.keveney.com/Vstirling.html

4

Challenges
Choosing the set of steps

! How to segment process into steps?
! Note: Steps often shown sequentially for clarity,

rather than showing everything simultaneously

Tversky suggests
! Coarse level – segment based on objects
! Finer level – segment based on actions

! Static depictions often do not show finer level segmentation

7

Animated Transitions in
Statistical Graphics

8

5

9

Log Transform

10

6

11

Sorting

12

7

13

Filtering

14

8

17

Change Encodings

18

9

19

Change Data Dimensions

20

10

Change Data + Encodings

21

Change Encodings + Axis Scales

22

11

Visual Encoding

Change selected data
dimensions or encodings

Animation to
communicate changes?

Data Graphics & Transitions

23

32

12

Appropriate animation improves graphical perception

Use simple staged transitions, but doing one thing at a time
not always best

Axis re-scaling hampers perception
Avoid if possible (use common scale)

Maintain landmarks better (delay fade out of gridlines)

Subjects preferred animated transitions

Study Conclusions

33

Implementing Animation

40

13

Animation Approaches
Frame-based Animation

Redraw scene at regular interval (e.g., 16ms)
Developer defines the redraw function

41

1 2 3 4

Frame-based Animation

42

14

1 2 3 4

circle(10,10) circle(15,15) circle(20,20) circle(25,25)

Frame-based Animation

43

1 2 3 4

circle(10,10) circle(15,15) circle(20,20) circle(25,25)

clear() clear() clear()

Frame-based Animation

45

15

Animation Approaches
Frame-based Animation

Redraw scene at regular interval (e.g., 16ms)
Developer defines the redraw function

46

Animation Approaches
Frame-based Animation

Redraw scene at regular interval (e.g., 16ms)
Developer defines the redraw function

Transition-based Animation (Hudson & Stasko ‘93)
Specify property value, duration & easing (tweening)
Typically computed via interpolation

step(fraction) { xnow = xstart + fraction * (xend - xstart); }

Timing & redraw managed by UI toolkit

47

16

Transition-based Animation
from: (10,10) to: (25,25) duration: 3sec

0s 1s 2s 3s

dx=25-10
x=10+(t/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx

48

Transition-based Animation
from: (10,10) to: (25,25) duration: 3sec
Toolkit handles frame-by-frame updates

0s 1s 2s 3s

dx=25-10
x=10+(t/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx x=10+(t/3)*dx

49

17

Any d3 selection can be used to drive animation.

D3 Transitions

50

Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values
var bars = svg.selectAll(“rect.bars”).data(values);

D3 Transitions

51

18

Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.
var bars = svg.selectAll(“rect.bars”).data(values);
// Static transition: update position and color of bars.
bars

.attr(“x”, (d) => xScale(d.foo))

.attr(“y”, (d) => yScale(d.bar))

.style(“fill”, (d) => colorScale(d.baz));

D3 Transitions

52

Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.
var bars = svg.selectAll(“rect.bars”).data(values);
// Animated transition: interpolate to target values using default timing
bars.transition()

.attr(“x”, (d) => xScale(d.foo))

.attr(“y”, (d) => yScale(d.bar))

.style(“fill”, (d) => colorScale(d.baz));

D3 Transitions

53

19

Any d3 selection can be used to drive animation.
// Select SVG rectangles and bind them to data values.
var bars = svg.selectAll(“rect.bars”).data(values);
// Animated transition: interpolate to target values using default timing
bars.transition()

.attr(“x”, (d) => xScale(d.foo))

.attr(“y”, (d) => yScale(d.bar))

.style(“fill”, (d) => colorScale(d.baz));
// Animation is implicitly queued to run!

D3 Transitions

54

bars.transition()
.duration(500) // animation duration in ms
.delay(0) // onset delay in ms
.ease(d3.easeBounce) // set easing (or “pacing”) style
.attr(“x”, (d) => xScale(d.foo))
…

D3 Transitions, Continued

55

20

bars.transition()
.duration(500) // animation duration in ms
.delay(0) // onset delay in ms
.ease(d3.easeBounce) // set easing (or “pacing”) style
.attr(“x”, (d) => xScale(d.foo))
…

bars.exit().transition() // animate elements leaving display
.style(“opacity”, 0) // fade out to fully transparent
.remove(); // remove from DOM upon completion

D3 Transitions, Continued

56

Goals: stylize animation, improve perception.
Basic idea is to warp time: as duration goes from start (0%)
to end (100%), dynamically adjust the interpolation fraction
using an easing function.

Easing Functions

57

21

http://easings.net/

60

Animation is a salient visual phenomenon
Attention, object constancy, causality, timing

For processes, step-by-step static images may be preferable
For transitions, animation has some benefits, but consider

task and timing

Summary

65

http://easings.net/

22

Announcements

66

Final project
Data analysis/explainer or conduct research

! Data analysis: Analyze dataset in depth & make a visual explainer
! Research: Pose problem, Implement creative solution

Deliverables
! Data analysis/explainer: Article with multiple different interactive

visualizations
! Research: Implementation of solution and web-based demo if possible
! Short video (2 min) demoing and explaining the project

Schedule
! Project proposal: Wed 11/3
! Design Review and Feedback: 10th week of quarter
! Final code and video: Fri 12/10 11:59pm

Grading
! Groups of up to 3 people, graded individually
! Clearly report responsibilities of each member

67

23

Network Layout

68

69

24

Graphs and Trees
Graphs
Model relations among data
Nodes and edges

Trees
Graphs with hierarchical structure
Connected graph with N-1 edges
Nodes as parents and children

70

Tree Layout

74

25

Tree Visualization
Indentation

! Linear list, indentation encodes depth

Node-Link diagrams
! Nodes connected by lines/curves

Enclosure diagrams
! Represent hierarchy by enclosure

Layering
! Layering and alignment

Tree layout is fast: O(n) or O(n log n),
enabling real-time layout for interaction

75

Indentation
Items along vertically spaced rows

Indentation shows parent/child
relationships

Often used in interfaces
Breadth/depth contend for space

Often requires scrolling

76

26

Visualizing Large Hierarchies

…

Indented Layout

77

Single-Focus (Accordion) List

Separate breadth & depth in 2D
Focus on single path at a time

78

27

Node-Link Diagrams
Nodes distributed in space, connected by lines
Use 2D space to break apart breadth and depth
Space used to communicate hierarchical orientation

Typically towards authority or generality

79

Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§ Breadth of tree along one dimension
§ Depth along the other dimension

81

28

Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§ Breadth of tree along one dimension
§ Depth along the other dimension

82

Basic Recursive Approach
Repeatedly divide space for subtrees by leaf count
§ Breadth of tree along one dimension
§ Depth along the other dimension
Problem: Exponential growth of breadth

83

29

Reingold & Tilford’s Tidier Layout
Goal: maximize density and
symmetry.

Originally for binary trees,
extended by Walker to cover
general case.

This extension was corrected by
Buchheim et al. to achieve a
linear time algorithm

84

Reingold-Tilford Layout
Design concerns

Clearly encode depth level
No edge crossings
Isomorphic subtrees drawn identically
Ordering and symmetry preserved
Compact layout (don’t waste space)

85

30

Reingold-Tilford Algorithm
Initial bottom-up (postorder) tree traversal

! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coordinates
! Sum aggregated shift

86

Reingold-Tilford Algorithm

87

31

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

88

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

89

32

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

90

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

91

33

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

92

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

93

34

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

94

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

95

35

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

96

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

97

36

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

98

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

99

37

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

100

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

101

38

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

102

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

103

39

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

104

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

105

40

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

106

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

107

41

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

108

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

109

42

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

110

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

111

43

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

112

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

113

44

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

114

Reingold-Tilford Algorithm

Initial bottom-up (postorder) tree traversal
! Set y-coordinate based on depth
! Initialize x-coordinate to zero

At each parent node, merge left and right subtrees
! Shift right subtree as close as possible to left

! Computed efficiently by maintaining subtree contours

! Center parent nodes above children
! Record “Shift” in position offset for right subtree

Final top-down (preorder) traversal to set x-coords
! Sum aggregated shift

115

45

Radial Layout
Node-link diagram in polar coords

Radius encodes depth root at center

Angular sectors assigned to subtrees
(recursive approach)

Reingold-Tilford approach can also be
applied here

118

Problems with Node-Link Diagrams

Scale
Tree breadth often grows exponentially
Even with tidier layout, quickly run out of space

Possible solutions
Filtering
Focus+Context
Scrolling or Panning
Zooming
Aggregation

121

46

Visualizing Large Hierarchies

………

Indented Layout Reingold-Tilford Layout

122

MC Escher, Circle Limit IV

123

47

Hyperbolic Layout
Layout in hyperbolic space, then
project on to Euclidean plane

Why? Like tree breadth, the
hyperbolic plane expands
exponentially

Also computable in 3D, projected
into a sphere

124

Degree-of-Interest Trees [AVI 04]

Space-constrained, multi-focal tree layout
https://www.youtube.com/watch?v=RTQ0N4QY0yc

https://observablehq.com/@d3/collapsible-tree

125

https://www.youtube.com/watch?v=RTQ0N4QY0yc
https://observablehq.com/@d3/collapsible-tree

48

Degree-of-Interest Trees

Cull “un-interesting” nodes on a per block basis until all blocks on a level fit
within bounds

Center child blocks under parents
https://www.youtube.com/watch?v=RTQ0N4QY0yc

https://observablehq.com/@d3/collapsible-tree

126

Enclosure Diagrams
Encode structure using spatial enclosure
Popularly known as TreeMaps

Benefits
Provides a single view of an entire tree
Easier to spot large/small nodes

Problems
Difficult to accurately read depth

127

https://www.youtube.com/watch?v=RTQ0N4QY0yc
https://observablehq.com/@d3/collapsible-tree

49

Circle Packing Layout
Nodes represented as sized circles

Nesting to show parent-child
relationships

Problems:

128

Circle Packing Layout
Nodes represented as sized circles

Nesting to show parent-child
relationships

Problems:
Inefficient use of space
Parent size misleading

129

50

Treemaps
Hierarchy visualization that emphasizes values of nodes via
area encoding

Partition 2D space such that leaf nodes have sizes
proportional to data values

First layout algorithms proposed by Shneiderman et al. in
1990, with focus on showing file sizes on a hard drive

131

Slice & Dice layout: Alternate horizontal / vertical partitions.

132

http://www.cs.umd.edu/hcil/treemap-history/

51

Wattenberg 1998

Squarifed layout: Try to produce square (1:1) aspect ratios

133

Squarified Treemaps [Bruls 00]

Greedy optimization for objective of square rectangles
Slice/dice within siblings; alternate whenever ratio worsens

https://vega.github.io/vega/examples/treemap/

134

https://vega.github.io/vega/examples/treemap/

52

Why Squares
Posited Benefits of 1:1 Aspect Ratios

1. Minimize perimeter, reducing border ink.

2. Easier to select with a mouse cursor.
Validated by empirical research & Fitt’s Law!

3. Similar aspect ratios are easier to compare.
Seems intuitive, but is this true?

135

Error vs. Aspect Ratio [Kong 10]

1. Comparison of squares has higher error!

2. Squarify works because it fails to meet its objective?

Squares

136

53

Why Squares
Posited Benefits of 1:1 Aspect Ratios

1. Minimize perimeter, reducing border ink.

2. Easier to select with a mouse cursor.
Validated by empirical research & Fitt’s Law!

3. Similar aspect ratios are easier to compare.
Seems intuitive, but is this true?
Extreme ratios & squares-only more inaccurate.
Balanced ratios better? Target golden ratio?

137

